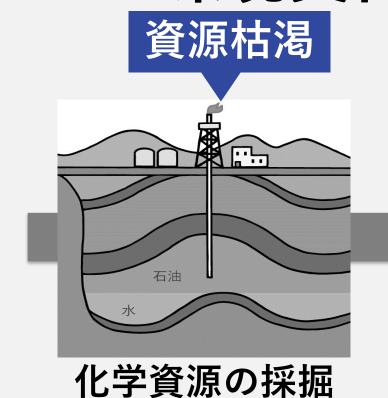
持続可能な未来を創るシン繊維

~マイクロ波を用いた機能性天然繊維開発~

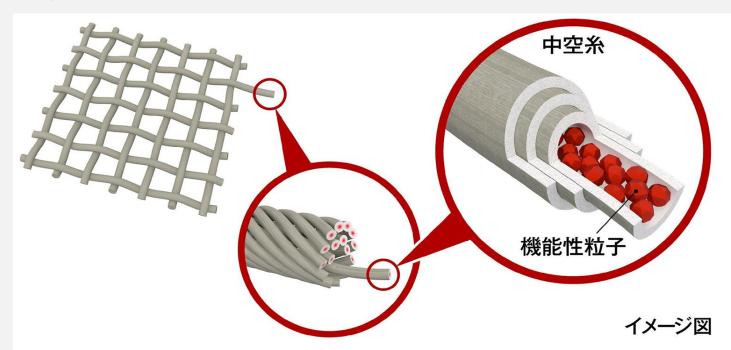


みなも株式会社 CEO 髙橋隼永

問い合わせ先:info@minamo.science

課題/背景

環境負荷を下げるため化学繊維から天然繊維への転換が必要

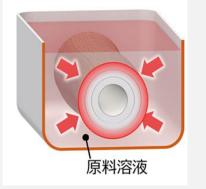

世界2位の 汚染産業

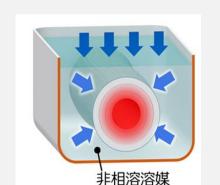
廃棄

ソリューション

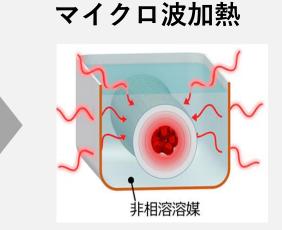
天然繊維の高機能化技術で天然繊維の利用を促進

▼技術シーズイメージ




※本技術は、弊社CTO が国立研究開発法人産業 技術総合研究所在籍時に 発明したものです(特許 第7405392号)。弊社で は当該特許のライセンシ ングを受け、開発を進め ています。

▼機能性粒子導入の流れ

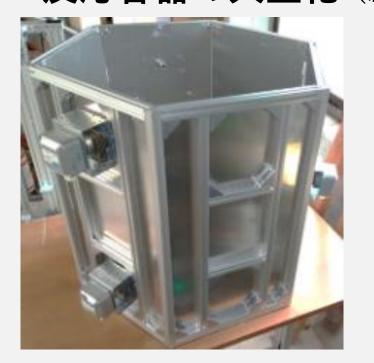

繊維断面

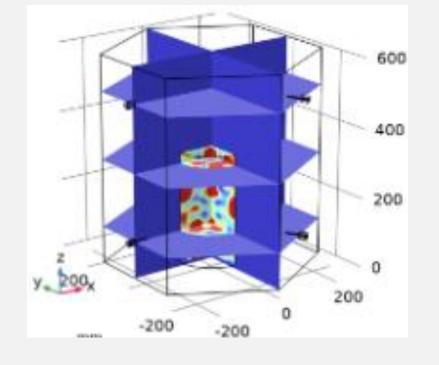
原料溶液に侵漬

非相溶溶媒に置換

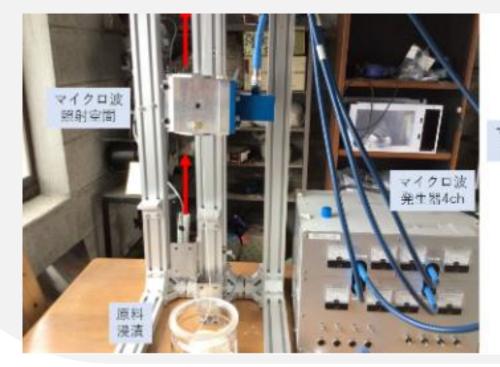
産業技術総合研究所 プレスリリース 2020年1月21日 https://www.aist.go.jp/aist_j/press_release/pr2020/pr20200121_3/pr20200121_3.html

▼これまでの導入実験


※期待する効果については赤字のみ実証済み。 ※導入実績は産総研で報告されたものです。


*印は産総研にて機能付与を委託

種類	繊維素材	機能性粒子・結晶	期待する効果
天然織維	綿	Ag	抗菌(Agのみ)・抗ウイルス (Cuのみ)・防カビ・消臭 導電性(静電気防止) ウェラブルデバイス (配線・センサ)
	綿	Cu, Cu@Ag	
	綿	Pt	
	紙糸・紙布	Ag	
	ヘンプ	Ag	
	カポック	Ag	
	竹	ミョウバン	防虫、芳香、リラックス、薬
	杉	ミョウバン	効
	綿	シリカゲル	調湿、制汗
	カポック	シリカゲル	保温、遮熱、遮光
化学繊維	浄水用中空糸	シリカゲル]耐熱、防炎、難燃
	ポアフロン	ゼオライト	調湿、脱臭
	ポアフロン	ポリイミド	耐熱、難燃、耐切創 ウェラブルデバイス (セン サ)
	ポアフロン	ヒノキチオール	防虫、芳香、リラックス、薬 効


FTC (Fukushima Tech Create)での取り組み

- ■企業ヒアリングで得られた知見
 - ・サンプル品の必要量は最低2KG→装置の大型化が必要
 - ・ニーズのある機能性→持続的な冷感、速乾性、発熱性
 - ・抗菌/抗ウイルスの市場→医療/介護/ベビー領域
- ■装置開発
 - ・反応容器の大型化 (左:製作機器 右:発熱分布のシミュレーション)

・連続処理装置

- ■試作したテストサンプル
 - ・ハンカチ地* (写真)
 - ・デニム地*
 - ・タオル地*
 - ・コットン糸*
 - ・コットン糸*で織ったランチョマット
 - ・コットン糸*を編んだベビートイ

今後の展望

